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CURVE FIT TECHNIQUE FOR A SMOOTH
CURVE USING GAUSSIAN SECTIONS

INTRODUCTION

In optics, it is often necessary to determine the total luminous flux of a beam
by use of sampling beam receivers. If the beam is circular in cross section and
it is desirable to approximate this with a Gaussian energy distribution along
any diameter, then it is referred to as Gaussian distribution. Receivers placed
on a diameter of this beam provide discrete samples so that the total amount of
flux may be calculated. Thus, a technique that forms a smooth Gaussian patch
between any number of discrete sample points would be useful for a total
incoming flux approximation. This report deals with the development of this
technique.

DISCUSSION

Development of First Gaussian Section

To simplify the fitting technique, two sampling cases are assumed. One fis
that one sample point has an intensity greater than all other sample points, and
the other is that two adjacent sample points have the same luminous intensity.
These sampling cases lead to two different beginnings for the Gaussian sections
surrounding the peak point and will be dealt with separately.

If there is a single peak point, represented by (xg, yo), the Gaussian sec-
tion that spans to the next point on either side must be found. A Gaussian sec-

tion (Gp) has the form

X, - U
_;!( k < n)2 Equation (1)
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(xk, yk) are the coordinates of any point which the section
passes through

un is the mean point of the Gaussian section
sn is the standard deviation of the Gaussian section
¢p is the normalizing constant for the Gaussian section.

The peak point of any Gaussian has a slope of 0, therefore, the first section

must have its peak at (xo, yo). Here, the exponential is at its maximum, 1,
therefore the exponent is 0, leading us to realize that

Uy = % Equation (2)
Now, since the exponential has a value of 1, the Gaussian simplifies to
¢ = ¥ Equation (3)

Rearranging (1) for the standard deviation and letting (x1,y1) be the other
boundary the Gaussian passes through, we have

(xl = ul)z ;5

$1 = (ztmm ¢, - Tny;) Equation (4)

and equations (2) through (4) describe the first Gaussian section.

If two points have the same intensity, they can be assumed to be boundaries of
the same Gaussian. Then the mean of the section is the midpoint between the two

sample points. Here (xl, yl) represents a second point with the same intensity
as the first, and it is realized that

up = (x1 + xo)/2 Equation (5)




To simplify matters, an assumption will be made that the measured intensities at
these points are 90X of the peak intensity. This means that

C) = y1/0.9 = y0/0.9 Equation (6)

By using equation (4), sy can now be found. Thus, equations (4) through (6)
decribe the first Gaussian section in the second case.

Development of Subsequent Sections

After the first Gaussian section is fitted, subsequent Gaussian sections
must be fitted to assure a smooth curve. A smooth curve is one where both func-
tions have equal values and equal slopes at the point of junction. This con-
dition on the second section leads to

G'n(xk) = G'n+1(xk) Equation (7)

Gn 1s the Gaussian section ending at (xk, yk) and Gp+] is the Gaussian section

extending from (xx, yk) to (xk+1, yk+1). Taking the derivative of Gp from (1)
at the common boundary point (xk, yx) we have

Gn'(xk) = -YR‘:E-:-Enl- Equation (8)

snz

Performing the same derivative for the Gaussian Gp+1 at (xk, yk) we have

(xk - un+l)
Gne1' (xk) = Yoo Equation (9)

(Sn+1)2
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Using equation (7), equations (8) and (9) may be set equal to each other. From
this, the -yx factors may he cancelled out and the equation may then be
rearranged to solve for sp+1

(xk - un+1)
(sn+1)2 = sn2 Equation (10)

(xk - Un)

which relates sp+1 to sp. However, this equation has the term up+] which has
yet to be found. To do so, we take the Gaussian Gp+] previously defined as

being bounded by the points (x,, y,) and (x,,1, y41). The above Gaussian must
then satisfy the following condition:

ok Unely2 o M T Onel g2
2, = 2041 Equation (11)
Ye41© n+l Y@ n

From this we take the natural logarithm of both sides of the equation and
rearrange it to isolate ups4)

2
2(s,,1)(In Yier = 10 y) =

) 2 2 Equation (12)
(g = Upy) = (xpqq = upyy)

Substituting the general form for sp+1 (from equation (10)), and rearranging
terms we have

2%, 5n2(10 yk4l - 1n yx) - (x2 - xk+12)(xk - un)
Equation (13)

Up+l =

25n2(1n yk+1 - 1n yk) = 2(xg - xg+1)(xk - up)

‘A-_'Aégm'._:. e W) "~‘l'l"=A-f LS.
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This allows up+] to be found solely in terms of known quantities. Then up+1 may
be substituted into equation (10) to find sp+1. These, in turn, may be used in
equation (1), along with the peint (xg, yk), to solve for cp+l. Thus we have a
method of finding a Gaussian solely from the preceding Gaussian and its boundary
points. This method will work for any case and is therefore general.

Computer Testing (Sample run, figures 1 and 2)

To facilitate validation of the curve-fit technique developed, a computer
program was written to perform the task of finding the Gaussian sections of a
curve-fit problem by the methods given here. (The program, run on a Tektronix
65-4052 System, is listed in figure 2.)

The data used for the sample run consisted of the peak, 90%, 50%, and 10% points
of a Gaussfan curve withu =0, s = 1, ¢ = 0.398942. The printout from a sample
run with first one side's curve fit and then the other side's curve fit is shown
in figure 1.

Section Mean Stan. Dev Norm Cons

1 0 " 70.999834481528 0.398942

2 0 0.999668990452 0.398962878929

3 -4.415707426E-4 0.999712877896 0.399308591275
Section Mean Stan. Dev Norm Cons
1 o 0.999834481528 0.398042
2 0 0.999668990452 0.398962878929

3 4,415707426E-4 0.999712877896 0.399308591275

Figure 1. Output from sample curve-fit program.
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2 The sample run output seems quite accurate. To determine the accuracy, a graph
’ was prepared calculating the percent deviation of the curve-fitted curve with _
the original curve, and the results are shown in figure 3. !r

0.2 T

o

3

-3

.j

]

0.1 : T

el e a0 )

-3 -2 -1 0 1 2 3 a

- Figure 3. Graph of percent deviation as a function of x.

The greatest deviation is under .15%, an error small enough to be attributed to
computer rounding and sample error.

CONCLUSIONS AND RECOMMENDATIONS

The above described technique has led to a deviation from a norm of no greater
than .15%. This devation is of a small enough magnitude to validate the

b developed method of curve-fitting. Furthermore, the algorithm that does the
fitting is simple enough to be used on a programmable calculator.
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